

Linear Algebra for Data Science and Artificial Intelligence E-Syllabus

		T' A1 1 C D C 1 1 A CC 1 1 T A 11		
1	Course title	Linear Algebra for Data Science and Artificial Intelligence		
2	Course number	1914101		
3	Credit hours	3		
3	Contact hours (theory, practical)	3		
4	Prerequisites	Discrete Mathematics (1901101)		
5	Program title	Data Science		
6	Program code	04		
7	Awarding institution	The University of Jordan		
8	School	King Abdullah II School for Information Technology		
9	Department	Information Technology		
10	Level of course	Undergraduate (UG)		
11	Year of study and semester (s)	2021 - Spring		
12	Final Qualification	BSc		
13	Other department(s) involved in	None		
	teaching the course			
14	Language of Instruction	English		
15	Teaching methodology	□Blended ⊠Online		
16	Electronic platform(s)	⊠Moodle ⊠Microsoft Teams □Skype ⊠Zoom		
10	Electronic platform(s)	⊠Others http://omar.alkadi.net/		
17	Date of production/revision	18 February 2021		

18 Course Coordinator:

Name: Dr. Omar Al-Kadi Office number: 308 Phone number: 22623 Email: o.alkadi@ju.edu.jo

19 Other instructions:

- Textbook: Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares can be downloaded from here.
- Python Language Companion to Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares can be downloaded from here.

20 Course Description:

The aim of this course is to provide an introduction to vectors, matrices, and least square methods, all basic topics in linear algebra, in the context of data science and artificial intelligence.

21 Course aims and outcomes:

A- Aims:

On completion of this course, students should be able to:

- Understand basic concepts of linear algebra (systems of linear equations, matrix calculus, vectors and basic vector operations)
- Enhance problem-solving abilities to analyse mathematical arguments.
- Understand how linear algebra can be applied to solve computational problems in data science
- Perform linear algebra computations in Python programming language

B- Intended Learning Outcomes (ILOs):

Upon successful completion of this course, students will be able to:

On successfully completing the module, the students are expected to have gained good knowledge of:

No.	.Course Intended Learning Outcomes (CILOs)				
	Knowledge				
A	Solve linear equations using Gaussian elimination and matrix inversion.				
В	Carry out matrix operations, including inverses and determinants.				
C	Demonstrate understanding of vector space and subspace.				
D	Demonstrate understanding of linear independence, span, and basis.				
Е	Apply principles of matrix algebra to linear transformations.				
F	Determine eigenvalues and eigenvectors and solve eigenvalue problems.				
	Professional Skill				
G	Demonstrate how to solve practical linear algebra in Python programming language				
Н	Demonstrate teamwork and communication skills through group work activities				

22. Topic Outline and Schedule:

Week	Lecture	Торіс	Teaching Methods*/platform	Evaluation Methods**	References
	1.1		Synchronous		Moodle
	1.2		Synchronous	Online class	(http://elearning.ju.
1	1.3	Introduction to Linear Algebra	Asynchronous	discussion and participation	edu.jo) and subject webpage (http://omar.alkadi. net/2030-2)
	2.1		Synchronous		Moodle
	2.2	Vectors: addition,	Synchronous		(http://elearning.ju
2	2.3	scalar multiplication, inner product.	Asynchronous	Assignment	edu.jo) and subject webpage (http://omar.alkadi net/2030-2)
	3.1		Synchronous		Moodle
	3.2	Linear functions:	Synchronous	1	(http://elearning.ju
3	3.3	linear functions, Taylor approximation and regression model.	Asynchronous	Quiz	edu.jo) and subject webpage (http://omar.alkadi net/2030-2)
	4.1	Norm and distance: norm, distance, standard deviation, angle, complexity.	Synchronous	Assignment	Moodle
	4.2		Synchronous		(http://elearning.ju
4	4.3		Asynchronous		edu.jo) and subject webpage (http://omar.alkadi net/2030-2)
	5.1		Synchronous	Online class discussion and participation	Moodle
	5.2	Clustering: norm,	Synchronous		(http://elearning.ju
5	5.3	distances, clustering, the <i>k</i> -means algorithm.	Asynchronous		edu.jo) and subject webpage (http://omar.alkadi net/2030-2)
	6.1		Synchronous	Assignment	Moodle
	6.2	Linear independence:	Synchronous		(http://elearning.ju
6	6.3	linear dependence, basis, orthonormal vectors.	Asynchronous		edu.jo) and subject webpage (http://omar.alkadi net/2030-2)
	7.1	Matrices: zero and	Synchronous		Moodle
	7.2	identity matrices,	Synchronous	_	(http://elearning.ju
7	7.3	transpose, addition, and norm, matrix- vector multiplication.	Asynchronous	Quiz	edu.jo) and subject webpage (http://omar.alkadi net/2030-2)
	8.1		Synchronous		Moodle
	8.2	Matrices: geometric	Synchronous		(http://elearning.ju
8	8.3	transformations, selectors, incidence matrix, convolution		Assignment	edu.jo) and subject webpage (http://omar.alkadi
9	9.1		Asynchronous Synchronous	Quiz	net/2030-2)

	9.2	Matrices: linear and	Synchronous		Moodle
	affine functions.		,	1	(http://elearning.ju.
					edu.jo) and subject
	9.3				webpage
			Asynchronous		(http://omar.alkadi. net/2030-2)
	10.1	Matrices: matrix	Synchronous		Moodle
	10.1	multiplication,		Online class	(http://elearning.ju.
10	10.2	composition of linear	Synchronous	discussion and	edu.jo) and subject
10	10.2	functions, matrix		participation	webpage
	10.3	power, QR			(http://omar.alkadi.
		factorization	Asynchronous		net/2030-2)
	11.1	-	Synchronous		Moodle
	11.2	Matrices: inverse	Synchronous	Quiz	(http://elearning.ju. edu.jo) and subject
11		matrices, eigenvalues			webpage
	11.3	and eigenvectors.			(http://omar.alkadi.
			Asynchronous		net/2030-2)
	12.1		Synchronous		Moodle
	12.2]	Synchronous	Online class discussion and	(http://elearning.ju.
12		Least squares: least			edu.jo) and subject webpage
	12.3	square problem		participation	(http://omar.alkadi.
			Asynchronous		net/2030-2)
	13.1		Synchronous	Online class	Moodle
	13.2	Least squares: least	Synchronous		(http://elearning.ju.
13		square problem, least		discussion and	edu.jo) and subject
	13.3	square data fitting.		participation	webpage
	13.3		Asynchronous		(http://omar.alkadi. net/2030-2)
	14.1		Asynchronous		Moodle
	14.1	Least squares: least	Asynchronous	Online class	(http://elearning.ju.
14		squares data fitting,	Asylicinollous	discussion and	edu.jo) and subject
14	142	validation, feature		participation	webpage
	14.3	14.3 engineering			(http://omar.alkadi.
	15.1		Asynchronous		net/2030-2)
	15.1	Least squares	Synchronous	4	Moodle (http://elearning.ju.
	15.2	Least squares: classification, least	Synchronous	4	edu.jo) and subject
15		squares classifier,		-	webpage
	15.3	multi-class classifiers			(http://omar.alkadi.
			Asynchronous		net/2030-2)

- Teaching methods include: Synchronous lecturing/meeting; Asynchronous lecturing/meeting
- Evaluation methods include: Homework, Quiz, Exam, pre-lab quiz...etc.

23 Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	Period (Week)	Platform
First quiz	4 marks	Vectors & linear functions	Week 3	Moodle

First and second assignment	2 marks	Vectors, linear functions, and norm and distance	Week 2 and 4	Google Classroom	
Midterm exam	30 marks	Vectors, linear functions, norm and distance, clustering, linear independence, and matrices	Week 7	Moodle	
Third and fourth assignment	2 marks	linear independence, and matrices	Week 6 and 8	Google Classroom	
Hands-on programming quiz	3 marks	Vectors, linear functions, norm and distance, clustering, linear independence, and matrices	Week 11	Moodle	
Third quiz	4 marks	Least squares	Week 13	Moodle	

24 Course Requirements (e.g. students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

$\mathbf{D}\mathbf{C}/\mathbf{I}$	4	D 41	A 1	distribution	T 4	XT 4 1 1
PI /191	ntan	PWINON	Anaconda	dictribilition	IIInwrar	NOTABOOK
ı C/Ia	nwn.	i vuion	– Anaconua	uisuituuuon	Juniter	TIOLOUGE.
	,				,	

25 Course Policies:

- A- Attendance policies: Students are responsible for attending online lectures and downloading and viewing all material covered uploaded to the LMS (http://elearning.ju.edu.jo) and the subject webpage at (http://omar.alkadi.net/2030-2).
- B- Absences from exams and submitting assignments on time: It is the students' responsibility to turn in their homework assignments to their instructors by the announced due date/time. Not attending exams without a valid excuse is not accepted.
- C- Health and safety procedures: Students should adhere to the University of Jordan health and safety rules and procedures
- D- Honesty policy regarding cheating, plagiarism, misbehavior: For more details on University regulations please visit http://www.ju.edu.jo/rules/index.htm
- E- Grading policy: 50% semester work comprising of assignments, quizzes and programming project to be submitted at the end of the semester, and 50% for final exam.
- F- Available university services that support achievement in the course: http://elearning.ju.edu.jo

26 References:

- A- Required book(s), assigned reading and audio-visuals:
 - Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, by Stephen Boyd and Lieven Vandenberghe, (Cambridge University Press, 3rd edition)
- B- Recommended books, materials and media:
 - Introduction to Linear Algebra, by Gilbert Strang, (Wellesley Cambridge Press, 5th Ed).
 - Contemporary Linear Algebra, by Anton and Busby, (Wiley.
 - *Elementary Linear Algebra; applications version*, by Anton, H., Rorres, C., (Wiley, 12th Ed).
 - *Linear Algebra and its Applications*, by Lay, David C., (Addison Wesley, 2nd Ed).
 - Linear Algebra with Applications, by Leon, Steven J., (Prentice Hall, 6th Ed).
 - Applied Linear Algebra, by Noble, B. and Daniel, J., (Prentice-Hall, 3rd Ed).

27 Additional information:

For additional information, student can refer to the lecturers' website at http://omar.alkadi.net/teaching